River Basin Planning Act

(0.C.G.A. 12-5-520 to 525)

92 SB637/AP

Senate Bill 637

By: Senators Johnson of the 47th, Pollard of the 24th, Edge of the 28th and Egan of the 40th.

An Act

To amend Chapter 5 of Title 12 of the Official Code of Georgia Annotated, relating to water resources, so as to define certain terms; to provide for the development of river basin management plans for certain rivers; to provide for the contents of such plans; to provide for the appointment and duties of local advisory committees; to provide for notice and public hearings; to provide for submission to and approval of plans to the Board of Natural Resources; to make certain provisions relative to issuing certain permits; to provide for the application for and use of certain funds; to provide that this Act shall not enlarge the powers of the Department of Natural Resources; to repeal conflicting laws; and for other purposes.

Be It Enacted by the General Assembly of Georgia:

Section 1. Chapter 5 of Title 12 of the Official Code of Georgia Annotated, relating to water resources, is amended by inserting at the end thereof the following:

Article 8

- 12-5-520. As used in this article, the term:
 - (1) "Board" means the Board of Natural Resources.
 - (2) "Director" means the director of the Environmental Protection Division of the Department of Natural Resources.
- 12-5-521. The director shall develop river basin management plans for the following rivers: Alapaha, Altamaha, Canoochee, Chattahoochee, Coosa, Flint, Ochlocknee, Ocmulgee, Oconee, Ogeechee, St. Marys, Satilla, Savannah, Suwanee, Tallapoosa, and Tennessee. The director shall consult the chairmen of the local advisory committees on all aspects of developing the management plans. The director shall begin development of the management plan for the Chattahoochee and Flint river basins by December 31, 1992, and for the Coosa and Oconee river basins by December 31, 1993. Beginning in 1994, the director shall begin development of one management plan per calendar year until all required management plans have been begun. All management plans shall be completed not later than five years after they were begun and shall be made available to the public within 180 days after completion.
- 12-5-522. The management plans provided by Code Section 12-5-521 shall include, but not be limited to, the following:

- (1) A description of the watershed, including the geographic boundaries, historical, current, and projected uses, hydrology, and a description of water quality, including the current water quality conditions;
- (2) An identification of all governmental units that have jurisdiction over the watershed and its drainage basin;
- (3) An inventory of land uses within the drainage basin and important tributaries including point and nonpoint sources of pollution;
- (4) A description of the goals of the management plan, which may include educating the general public on matters involving the environmental and ecological concerns specific to the river basin, improving water quality and reducing pollution at the source, improving aquatic habitat and reestablishing native species of fish, restoring and protecting wildlife habitat, and providing recreational benefits; and
- (5) A description of the strategies and measures necessary to accomplish the goals of the management plan.
- 12-5-523. As an initial action in the development of a management plan, the director shall appoint local advisory committees for each river basin to consist of at least seven citizens and a chairman appointed by the director. The local advisory committees shall provide advice and counsel to the director during the development of the management plan. Each committee shall meet at the call of the chairman but not less than once every four months. The chairman and members of the local advisory committees shall serve without compensation or reimbursement of expenses.

12-5-524.

- (a) Upon completion of the penultimate draft of a management plan, the director shall conduct public hearings within the river basin. At least one public hearing shall be held in each river basin named in Code Section 12-5-521. The director shall publish notice of each such public hearing in a newspaper of general circulation in the area announcing the date, time, place, and purpose of the public hearing. A draft of the management plan shall be made available to the public at least 30 days prior to the public hearing. The director shall receive public comment at the public hearing and for a period of at least ten days after the public hearing.
- (b) The division shall evaluate the comments received as a result of the public hearings and shall develop the final draft of the management plan for submission to the board for consideration within 60 days of the public hearing.
- (c) The board shall consider the management plan within 60 days after submission by the director. The department shall publish the management plan adopted by the board and shall make copies available to all interested local governmental officials and citizens within the river basin covered by such management plan.
- (d) Upon the board's adoption of a final river basin management plan, all permitting and other activities conducted by or under the control of the Department of Natural Resources shall be consistent with such plan.
- (e) No provision of this article shall constitute an enlargement of the existing statutory powers of the department.
- 12-5-525. The director is directed to apply for the maximum amount of available funds pursuant to Sections 106, 314, 319, and 104(b)(2) of Public Law 95-217, the federal Clean Water Act, and any other available source for the development of river basin management plans."
- **Section 2.** All laws and parts of laws in conflict with this Act are repealed.

Georgia Instream Water Quality Standards For All Waters: Toxic Substances

(Excerpt From Georgia Rules and Regulations for Water Quality Control Chapter 391-3-6-.03 Water Use Classifications and Water Quality Standards)

- I Instream concentrations of the following chemical constituents which are considered to be other toxic pollutants of concern in the State of Georgia shall not exceed the criteria indicated below under 7-day, 10-year minimum flow (7Q10) or higher stream flow conditions except within established mixing zones:
 - 1. 2,4-Dichlorophenoxyacetic acid (2,4-D) 70 μg/l
 - 2. Methoxychlor* 0.03 µg/l
 - 3. 2,4,5-Trichlorophenoxy propionic acid (TP Silvex) 50 μg/l
- II Instream concentrations of the following chemical constituents listed by the U.S. Environmental Protection Agency as toxic priority pollutants pursuant to Section 307(a)(1) of the Federal Clean Water Act (as amended) shall not exceed criteria indicated below under 7-day, 10-year minimum flow (7Q10) or higher stream flow conditions except within established mixing zones or in accordance with site specific effluent limitations developed in accordance with procedures presented in 391-3-6-.06.
 - 1. Arsenic
 - (a) Freshwater 50 µg/l
 - (b) Coastal and Marine Estuarine Waters 36 μg/l
 - 2. Cadmium
 - (a) Freshwater

(at hardness levels less than 100 mg/l) $0.7 \mu g/l^*$

(at hardness levels of 100 mg/l to

199 mg/l) $1.1~\mu\text{g/l}^*$

(at hardness levels greater than or equal to 200 mg/l) $2.0 \mu g/l^*$

Note: Total hardness expressed as CaCO₃.

(b) Coastal and Marine Waters 9.3 μg/l

- 3. Chlordane*
 - (a) Freshwater $0.0043 \,\mu g/l$
 - (b) Coastal and Marine Estuarine Waters

 $0.004 \, \mu g/l$

- 4. Chromium (VI)
 - (a) Freshwater 11 µg/l
 - (b) Coastal and Marine Estuarine Waters 50 μg/l
- 5. Total Chromium

(at hardness levels less than 100 mg/l) 120 μg/l

(at hardness levels of 100 mg/l to 199 mg/l)

 $210 \mu g/l$

(at hardness levels greater than or equal to 200 mg/l) 370 µg/l

Note: Total hardness expressed as CaC0₃.

- 6. Copper
 - (a) Freshwater

(at hardness levels less than 100 mg/l)

 $6.5 \,\mu \text{g/l}^*$

(at hardness levels of 100 mg/l to

199 mg/l) 12 μg/l

(at hardness levels greater than or equal to 200 mg/l) $$21\,\mu\text{g/l}$$

Note: Total hardness expressed as CaCO₃

- (b) Coastal and Marine Estuarine Waters 2.9 μg/l*
- 7. Cyanide*
 - (a) Freshwater 5.2 μg/l
 - (b) Coastal and Marine Estuarine Waters 1.0 μg/l

8. 9.	Dieldrin* 4,4'-DDT* a-Endosulfan*	0.0019 µg/l 0.001 µg/l		(at hardness levels greater than or mg/)	280 μg/l
10.	a-Endosulfan			Note: Total hardness expressed a	as CaCO _{3.}
	(a) Freshwater	0.056 μg/l		(b) Coastal and Marine Estuarine Wa	aters 8.3 µg/l
	(b) Coastal and Marine Estuarine Waters		19.	Pentachlorophenol*	
		0.0087 µg/l		(a) Freshwater	2.1 μg/l
11.	b-Endosulfan*			(b) Coastal and Marine Estuarine Wa	
	(a) Freshwater	0.056 µg/l	20		1.0
	(b) Coastal and Marine Estuarine Waters			PCB-1016 PCB-1221	0.014 μg/l 0.014 μg/l
				PCB-1232	0.014 μg/l 0.014 μg/l
		0.0087 µg/l		PCB-1242	0.014 μg/l
12.	Endrin*	$0.002~\mu g/l$		PCB-1248	0.014 µg/l
13.	Heptachlor*		25.	PCB-1254	0.014 µg/l
		0.0038 µg/l	26.	PCB-1260	0.014 µg/l
			27.	Phenol	300 µg/l
	(b) Coastal and Marine Estuarine Waters		28.	Selenium	
		0.0036 µg/l		(a) Freshwater	5.0 μg/l
14.	Heptachlor Epoxide*			(b) Coastal and Marine Estuarine Wa	aters 71 µg/l
	(a) Freshwater	0.0038 µg/l	29.	Silver	**
	(b) Coastal and Marine Estuarine Waters		30.	Toxaphene	0.0002 µg/l
			31.	Zinc	
15	Lead*	0.0036 µg/l		(a) Freshwater	
13.	(a) Freshwater			(at hardness levels less than 100	mg/l) 60 μg/l
	(at hardness levels less than 100 mg/l) 1.3 μg/l		(at hardness levels of 100 mg/l to	
	-	, , ,		199 mg/l)	110 µg/l
	(at hardness levels of 100 mg/l to			(at hardness levels greater than or	
	199 mg/l)	3.2 μg/l		mg/l)	190 µg/l
	(at hardness levels greater than or equ mg/l)	ıal to 200 7.7 µg/l		Note: Total hardness expressed a	
	Note: Total hardness expressed as Ca		Notes:	(b) Coastal and Marine Estuarine Wa	aters 86 µg/l
	-	-	riotes.		
	(b) Coastal and Marine Estuarine Waters	5.6 μg/l	•	The in-stream criterion is lower than laboratory detection limits.	the EPD
16.	Lindane [Hexachlorocyclohexane	0.00/1	**	•	is mallutant is
17.	(g-BHC-Gamma)] Mercury*	0.08 µg/l		Numeric limits are not specified. Th addressed in 391-3-606.	is ponutant is
	(a) Freshwater	0.012 μg/l		tream concentrations of the following of stituents listed by the U. S. Environme	
	(b) Coastal and Marine Estuarine Waters	S		ency as toxic priority pollutants pursua	
		0.025	307	'(a)(1) of the Federal Clean Water Act	(as amended)
18	Nickel	0.025 μg/l		ll not exceed criteria indicated below trage or higher stream flow conditions:	ınder annual
10.			1.	Acenaphthene	**
	(a) Freshwater		2.	Acenaphthylene	**
	(at hardness levels less than 100 mg/l) 88 μg/l	3.	Acrolein	780 µg/l
	(at hardness levels of 100 mg/l to		4.	Acrylonitrile	0.665 µg/l
	199 mg/l)	160 µg/l	5.	Aldrin	0.000136 µg/l

B-2 Tallapoosa River Basin Plan

6.	Anthracene	110000 µg/l	57.	Fluorene	14000 µg/l
7.	Antimony	4308 μg/l		Heptachlor	0.000214 μg/l
8.	Arsenic	0.14 μg/l		Heptachlor Epoxide	0.00011 µg/l
9.	Benzidine	0.000535 μg/l		Hexachlorobenzene	0.00077 µg/l
10.	Benzo(a)Anthracene	0.0311 µg/l		Hexachlorobutadiene	49.7 μg/l
11.	Benzo(a)Pyrene	0.0311 µg/l	62.	Hexachlorocyclopentadiene	17000 µg/l
	3,4-Benzofluoranthene	0.0311 µg/l		Hexachloroethane	8.85 µg/l
	Benzene	71.28 µg/l		Indeno(1,2,3-cd)Pyrene	0.0311 µg/l
14.	Benzo(ghi)Perylene	**		Isophorone	600 μg/l
	Benzo(k)Fluoranthene	0.0311 µg/l		Lindane [Hexachlorocyclohexane	, 0
16.	Beryllium	**		(g-BHC-Gamma)]	0.0625 μg/l
	a-BHC-Alpha	0.0131 µg/l	67.	Methyl Bromide (Bromomethane)	4000 μg/l
	b-BHC-Beta	0.046 µg/l	68.	Methyl Chloride (Chloromethane)	**
19.	Bis(2-Chloroethyl)Ether	1.42 μg/l	69.	Methylene Chloride	†
20.	Bis(2-Chloroisopropyl)Ether	170000 µg/l	70.	2-Methyl-4,6-Dinitrophenol	765 µg/l
	Bis(2-Ethylhexyl)Phthalate	5.92 µg/l	71.	3-Methyl-4-Chlorophenol	**
22.	Bromoform (Tribromomethane)	360 µg/l	72.	Nitrobenzene	1900 µg/l
23.	Carbon Tetrachloride	4.42 μg/l	73.	N-Nitrosodimethylamine	8.12 μg/l
24.	Chlorobenzene	21000 µg/l	74.	N-Nitrosodi-n-Propylamine	**
25.	Chlorodibromomethane	34 µg/l	75.	N-Nitrosodiphenylamine	16.2 µg/l
26.	2-Chloroethylvinyl Ether	**	76.	PCB-1016	$0.00045 \mu g/l$
27.	Chlordane	0.000588 µg/l	77.	PCB-1221	$0.00045 \mu g/l$
28.	Chloroform (Trichloromethane)	470.8 µg/l	78.	PCB-1232	$0.00045 \mu\text{g/l}$
29.	2-Chlorophenol	**	79.	PCB-1242	$0.00045 \mu\text{g/l}$
30.	Chrysene	0.0311 µg/l	80.	PCB-1248	$0.00045 \mu\text{g/l}$
31.	Dibenzo(a,h)Anthracene	0.0311 µg/l	81.	PCB-1254	$0.00045 \mu\text{g/l}$
32.	Dichlorobromomethane	22 μg/l	82.	PCB-1260	$0.00045 \mu\text{g/l}$
33.	1,2-Dichloroethane	98.6 µg/l	83.	Phenanthrene	**
34.	1,1-Dichloroethylene	3.2 µg/l	84.	Phenol	4,600,000 µg/l
35.	1,3-Dichloropropylene (Cis)	1700 µg/l	84.	Pyrene	11,000 µg/l
36.	1,3-Dichloropropylene (Trans)	1700 µg/l	85.	1,1,2,2-Tetrachloroethane	10.8 μg/l
37.	2,4-Dichlorophenol	790 µg/l	85.	Tetrachloroethylene	8.85 µg/l
38.	1,2-Dichlorobenzene	17000 µg/l	87.		48 (6.3) μg/l ‡
39.	1,3-Dichlorobenzene	2600 μg/l	88.	Toluene	200000 μg/l
40.	1,4-Dichlorobenzene	2600 µg/l		1,2-Trans-Dichloroethylene	**
41.	3,3'-Dichlorobenzidine	0.077 µg/l		1,1,2-Trichloroethane	41.99 µg/l
42.	4,4'-DDT	0.00059 µg/l		Trichloroethylene	80.7 μg/l
43.	4,4'-DDD	0.00084 µg/l		2,4,6-Trichlorophenol	6.5 μg/l
44.	4,4'-DDE	0.00059 µg/l		1,2,4-Trichlorobenzene	**
45.	Dieldrin	0.000144 µg/l		Vinyl Chloride	525 μg/l
	Diethyl Phthalate	120000 µg/l	Notes:		
	Dimethyl Phthalate	2900000 μg/l		meric limits are not specified. These	pollutants are
	2,4-Dimethylphenol	**	add	ressed in 391-3-606.	
	2,4-Dinitrophenol	14264 μg/l	† EPI	O has proposed to the Board of Natur	ral Resources
	Di-n-Butyl Phthalate	12100 µg/l		nging numeric limits for methylene c	
	2,4-Dinitrotoluene	9.1 µg/l		pecified to 1600 µg/l consistent with	EPA's National
	1,2-Diphenylhydrazine	0.54 μg/l	Tox	ics Rule.	
	Endrin Aldehyde	0.81 µg/l	‡ EPI	has proposed to the Board of Natur	ral Resources
	Endosulfan Sulfate	2.0 µg/l		nging numeric limits for thallium fro	
	Ethylbenzene	28718 μg/l	con	sistent with EPA's National Toxics F	Kule.
56.	Fluoranthene	370 µg/l			

- IV Site specific criteria for the following chemical constituents will be developed on an as-needed basis through toxic pollutant monitoring efforts at new or existing discharges that are suspected to be a source of the pollutant at levels sufficient to interfere with designated uses:
 - 1. Asbestos

- V Instream concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) must not exceed 0.0000012 μ g/l under long-term average stream flow conditions.
 - (e) Applicable State and Federal requirements and regulations for the discharge of radioactive substances shall be met at all times.

Point Source Control Efforts

Georgia DNR's management has promoted continuing improvement in the quality of return flows from permitted point sources in the basin. During the past twenty-five years, the majority of our municipal wastewater treatment plants were constructed or updated to meet state and/or federally mandated effluent standards. State and federal construction grants and the citizens of local municipalities funded these projects. This massive construction program has been so successful that over 90% of all these facilities in Georgia are currently meeting their effluent limits. We must protect our investments in these facilities and in the State's water quality.

The history of construction improvements for permitted dischargers within the Tallapoosa basin is summarized in the following table:

HUC 03150108

1956	West Haralson School 0.015 MGD septic tank system with sand filters constructed.
1970	Haralson County High School 0.015 MGD package treatment plant with aerated polishing pond constructed.
1971	Southwire Company installed 0.0225 MGD physical/chemical treatment system, \$250,000.
1972	Plantation Pipeline in Bremen installed a dissolved air floatation treatment unit to remove suspended oil.
1974	Southwire Company treated industrial wastewater redirected to City of Carrollton sewer system.
1975	Buchanan 0.12 MGD extended aeration treatment plant constructed.
1976	Southwire Company cooling water collection and recycle system installed, \$500,000.
1977	Copper Division of Southwire Company, CDS, installed a one million gallon collection impoundment and hydroxide precipitation treatment system to remove metals from stormwater, \$240,000.
1979	CDS hydroxide precipitation plant upgraded with an additional clarifier and filters, \$60,000.
1979	Carroll County Board of Education constructed a 0.015 MGD Mount Zion Sanitary Waste System. This subsurface system contained two gravel pre-filters, dosing chamber, sand filter and chlorine contact chamber.
1981	CDS constructed 150,000 gallon stormwater collection basin with pumping station, \$150,000.
1987	CDS replaced the 1 MG stormwater impoundment with a 3 MG concrete tank, \$1,300,000.
1990	City of Carrollton Little Tallapoosa Water Pollution Control Facility Spray Irrigation System constructed, \$10,000,000.
1990	Carroll County Water Authority expanded the Fairfield Plantation WPCP and utilize spray irrigation for disposal.
1991	Southwire Company installed a wastewater evaporator to reduce recycle flow and sludge, \$150,000.

1992	CDS replaced their existing stormwater treatment plant with a new 900 gallons per minute system using combined hydroxide/sulfide precipitation, \$1,300,000.
1994	West Haralson School sand filtration system reworked with new sand and rock.
1994	Plantation Pipeline upgraded treatment system to include air stripper, \$50,000.
1996	Bremen Buck Creek WTF upgraded and expanded to 0.9 MGD, \$1,667,864.
1997	Southwire Company pretreatment system modified to add carbon filtration, \$200,000.

C-2 Tallapoosa River Basin Plan

NPDES Permits for Discharges in the Tallapoosa River Basin

		Permitted			
Facility Name	NPDES #	Flow	Major?	County	Receiving Stream
HUC 03150108					
Bowdon WPCP	GA0023493	0.400		Carroll	Indian Creek
Bremen, Buck Crk WPCP	GA0021016	0.900		Haralson	Buck Creek
Bremen, Baxter Crk WPCP	GA0021008	0.200		Haralson	Baxter Creek
Buchanan WPCP	GA0021512	0.170		Haralson	Cochran Creek
DIT #44	GA0035921	0.009		Haralson	Williams Creek
Mt. Zion Elementary	GA0035769	0.015		Carroll	Little Turkey Creek
Plantation Pipeline	GA0030945	NPR		Haralson	Turkey Creek / Turner Creek Tributary
Southwire Wire Plant	GA0001139	NPR		Carroll	Buffalo Creek to Little Tallapoosa River
Southwire CDS	GA0001571	NPR		Carroll	Buffalo Creek
Tallapoosa WPCP	GA0020982	1.000	Υ	Haralson	Green Creek
Villa Rica, Tallapoosa WPCP	GA0027162	0.260		Carroll	Little Tallapoosa River

D-1

Notes: NPR: Not a permit requirement.

Tallapoosa River Basin Plan

Support of Designated Uses for Rivers and Streams in the Tallapoosa River Basin, 1996-1997

1	A
	p
	ре
	'n
	di
	lix E. S
	E
	· -
	qu
	p_{α}
	21
	t i
	9f
	\mathcal{L}
	si
	g_{I}
	nc
	ıte
	esignated Uses for Rivers and Streams in the Tallapoosa River Basin, 1996-1997
	7
	$U_{\mathcal{S}}$
	ie
	S
	fo
	r
	R
	'n
	e
	rs
	a
	n
	d
	Si
	Ţ
	9
	ın
	ıs
	i
	n
	th
	e
	T
	Tal
	Ж
	η
	Õ
	30
	a
	R
	i
	ре
	r
	B_{i}
	as
	ij
	1,
	1
	90
	96
	Ĩ,
	51
	99
	7

Name Location (HUC 03150108)		Water Use Classification	Status	Criterion Violated	Evaluated Causes	Actions to Alleviate	Miles	305(b)	303(d)	Priority
Rivers and Stream	ns Supporting Designated Uses -	HUC 3150108		•		•	•	•		
Baxter Creek Bremen - Haralson County (2)		Fishing	S	N/A	N/A	N/A	2	N/A	N/A	N/A
Beach Creek (4)	Haralson County	Fishing	S	N/A	N/A	N/A	5	N/A	N/A	N/A
Brooks Creek	Carroll/Haralson Counties	Fishing	S	N/A	N/A	N/A	10	N/A	N/A	N/A
Buck Creek (2)	Downstream Bremen - Carroll County	Fishing	S	N/A	N/A	N/A	5	N/A	N/A	N/A
Cochran Creek (6)	Upstream Tallapoosa River - Haralson County	Fishing	S	N/A	N/A	N/A	2	N/A	N/A	N/A
Lassetter Creek (4)	Haralson County	Fishing	S	N/A	N/A	N/A	3	N/A	N/A	N/A
Little Tallapoosa River (1)	ver		S	N/A	N/A	N/A	11	N/A	N/A	N/A
Little Tallapoosa River (1,6)	Carrollton to Buffalo Creek	Fishing	S	N/A	N/A	N/A	16	N/A	N/A	N/A
Mann Creek (4)	Haralson County	Fishing	S	N/A	N/A	N/A	6	N/A	N/A	N/A
Mud Creek	Carroll/Paulding Counties	Fishing	S	N/A	N/A	N/A	4	N/A	N/A	N/A
Swinney Branch (4)	Haralson/Polk Counties	Fishing	S	N/A	N/A	N/A	4	N/A	N/A	N/A
Tallapoosa River (4)	McClendon Creek to Water Mill Creek - Paulding and Haralson Counties	Drinking Water	S	N/A	N/A	N/A	7	N/A	N/A	N/A
Thomasson Creek (4)	Haralson/Paulding Counties	Fishing	S	N/A	N/A	N/A	4	N/A	N/A	N/A
Trestle Creek (6)	Temple - Carroll County	Fishing	S	N/A	N/A	N/A	2	N/A	N/A	N/A
Water Mill Creek (4)	Haralson/Paulding Counties	Fishing	S	N/A	N/A	N/A	5	N/A	N/A	N/A

Name	Location (HUC)	Water Use Classification	Status	Criterion Violated	Evaluated Cause(s)	Actions to Alleviate	Miles	305(b)	303(d)	Priorty
Rivers and St	reams Partially Support	ing Designated	Uses - HU	C 3150108						
Little Tallapoosa River (1,6)	Hwy 16 to Carrollton WPCP	Fishing	NS	Tox	l1	Douglas and Lomason eliminated the discharge 7/1/96.	2	X	1	NA
Little Tallapoosa River (1)	Buffalo Creek to Stateline	Fishing	NS	FC	UR	EPD will address nonpoint source (urban runoff) through a watershed protection strategy for the basin.	14	Х	Х	3
Tallapoosa River (1,2,10)	Hwy. 100 to Stateline - Haralson County	Fishing	NS	Pb*	NP	EPD will address nonpoint sources through a watershed protection strategy for the basin.	10	Х	Х	3
Tallapoosa River (1)	Water Mill Creek to Beach Creek	Fishing	NS	FC	NP	EPD will address nonpoint sources through a watershed protection strategy for the basin.	21	Х	Х	3
Town Branch (1)	Villa Rica - Carroll/Douglas Counties	Fishing	NS	Tox	М	City completed toxicity reduction evaluation in 1994 and in compliance with permit.	1	Х	2	1

		Water Use		Criterion	Potential					
Name	Location	Classification	Status	Violated	Cause(s)	Actions to Alleviate	Miles	305(b)	303(d)	Priority
Rivers and Str										
Buffalo Creek (1)	Upstream Little Tallapoosa River	Fishing	PS	FC	UR	EPD will address nonpoint source (urban runoff) through a watershed protection strategy for the basin.	6	Х	Х	3
Buffalo Creek (1)	Downstream Southwire Corp Carroll County	Fishing	PS	Cu,Pb	12	EPD Hazardous Waste Management Branch is working with the Southwire Corporation to assess and develop site cleanup options.	3	х	х	2

	10	4
	Ξ	=
+	a	
	\circ	
	$\mathcal{Z}_{\mathcal{Q}}$	
	Kiver	•
	basin	
	rian	

Name	Location	Water Use Classification	Status		Potential Cause(s)	Actions to Alleviate	Miles	305(b)	303(d)	Priority
Tributary to Baxter Creek (2)	Bremen	Fishing	PS	FC	UR	EPD will address nonpoint source (urban runoff) through a watershed protection strategy for the basin.	1	Х	3	3
Tributary to Buck Creek (2)	Bremen	Fishing	PS	FC	UR	EPD will address nonpoint source (urban runoff) through a watershed protection strategy for the basin.	1	х	3	3
Tributary to Buffalo Creek (1)	Carrollton	Fishing	PS	Cd,Cu,P b,Ni,Zn, Se	12	EPD Hazardous Waste Management Branch is working with the Southwire Corporation to assess and develop site cleanup options.	1	х	х	2

Data Source Codes (Column 1)

1 = EPD Watershed Planning and Monitoring Program

2 = EPD Permitting Compliance and Enforcement Program (Municipal)

4 = Wildlife Resources Division

7 = Gainesville College

8 = Georgia Institute of Technology9 U.S. Environmental Protection

U.S. Environmental Protection Division

10 = U.S. Geologic Survey

11 = U.S. Army Corps of Engineers

14 = Cobb County

15 = DeKalb County

16 = Douglas County Water & Sewer

Authority

17 = Fulton County

18 = Gwinnett County

20 = City of Gainesville 22 = Georgia Mountains, R.D.C. 25 = Lake Blackshear (Lake Blackshear

Watershed Association)

26 = Lake Lanier (University of Georgia)

27 = West Point (LaGrange College/Auburn University

28 = Georgia Power Company

32 = Jones Ecological Resource Center

33 = Alabama DEM

34 = City of College Park

36 = University of Georgia

38 = Columbus Unified Government

Use Support Status (Column 4)

S = Supporting

PS = Partially Supporting

NS = Not Supporting

Criterion Violated Codes (Column 5)

Bio = Biota Impacted
Cd = Cadmium

Cu = Copper

DO = Dissolved Oxygen

FC = Fecal Coliform Bacteria

FCG = Fish Consumption Guidelines

Hg = Mercury

Pb = Lead

Temp = Temperature

Tox = Toxicity Indicated

Zn = Zinc

* = Minimal Database

Potential Cause Codes (Column 6)

CSO = Combined Sewer Overflow

I1 = Industrial Facility

12 = Residual From Industrial Sources

M = Municipal Facility

NP = Nonpoint Sources/ Unknown

Sources

UR = Urban Runoff/Urban Effects